To avoid droplet and smear infections as far as possible, hygienic hands, textiles, and surfaces are of paramount importance. The essential factor in avoiding or limiting the spread of disease in childcare facilities is regular and thorough hand-washing, by children and their carers.
However, textiles can also play a part in spreading pathogens. Viruses do not have their own metabolism and can therefore only survive for a limited time outside a host, and unlike bacteria, do not multiply there. However, as studies have impressively documented, textiles that are in regular contact with hands have been proven to contribute to the spread of viruses (Sauver et al., 1998). In a scientific examination, clothes as well as domestic and hospital textiles in the form of bed linen, towels, kitchen towels, and so on are, alongside hands, an important potential transmission route for viruses.
Surfaces of all kinds, which can also be contaminated by viruses and bacteria via the hands or air, are the third key transmission route for viruses. One important element in preventing infection is therefore the cleaning of surfaces. The Hohenstein scientists are investigating these factors in their current research project.
To achieve this goal, various organic and inorganic colloidal or nanoparticle copper compounds and copper complexes were first applied in a sol-gel process. The effectiveness of the textile microfibre substrate was optimized using various application techniques such as foulard or spray methods. The inactivation of the test viruses was significant, was retained over 15 washing cycles and was at the same time abrasion-resistant.
A second alternative antiviral finish of microfibre cloths was achieved by finishing with copper pigments in a high-temperature exhaust process. In a similar way to dying with dispersion dyes, the dispersed copper pigments were incorporated in the fibres in a slightly acid environment. In a second step, fixing was carried out using a polymer binding agent in a cold padding process to protect the copper particles against mechanical abrasion. These copper finishes also produced good evenness, but there was a slight green tone compared to the originally lighter fabric colour (see figure 2). All samples passed the laboratory tests on skin-friendliness.
The effectiveness tests under realistic conditions were carried out on different surfaces, such as glass, stainless steel or wood, which were contaminated with viruses and wiped with the finished cleaning cloths. The bacterial virus MS2, a non-pathogenic surrogate virus, which due to its structure and environmental stability is comparable to clinically relevant viruses such as novovirus, poliovirus, hepatitis A or enters viruses, was used as the test virus. The finished microfibre cloths absorbed 91 % of the applied viruses. At the same time, the virus concentration in the cloth was reduced by approximately 90%. Effectiveness tests against bacteria and mould were also carried out in accordance with standards (DIN EN ISO 20743 and EN 14119). With this test set-up, the finishes were optimized in a targeted manner.
The research project reveals that antiviral cleaning cloths provide an efficient hygienic effect and can help to reduce the germ transfer rate e.g. of pathogens in nurseries and child day care centers. However, this new functionalisation could be of interest in the domestic environment, in hospitals, old people's homes, care homes and in communal facilities (e.g. canteens) and in protective clothing for the fire brigade, emergency services and military.
Comments