• Linkdin

PFAS chemicals can reach body's bloodstream: Research

06 Jul '24
4 min read
PFAS chemicals can reach body's bloodstream: Research
Pic: University of Birmingham

Insights

  • A University of Birmingham study reveals PFAS can permeate the skin barrier, entering the bloodstream.
  • Despite previous beliefs that PFAS couldn't cross due to ionisation, research shows significant dermal absorption of 15 out of 17 tested substances, including regulated ones like PFOA.
  • Shorter chain PFAS variants exhibit higher absorption rates.
A new research from the University of Birmingham has proved for the first time that a wide range of PFAS (perfluoroalkyl substances) – chemicals which do not break down in nature – can permeate the skin barrier and reach the body’s bloodstream.

PFAS are used widely in industries and consumer products from waterproof clothing and school uniforms to personal care products because of their water and stain repellent properties. While some substances have been banned by government regulation, others are still widely used and their toxic effects have not yet been fully investigated.

PFAS are already known to enter the body through other routes, for example being breathed in or ingested via food or drinking water, and they are known to cause adverse health effects such as a lowered immune response to vaccination, impaired liver function and decreased birth weight.

It has commonly been thought that PFAS are unable to breach the skin barrier, although recent studies have shown links between the use of personal care products and PFAS concentrations in human blood and breast milk. The new study is the most comprehensive assessment yet undertaken of the absorption of PFAS into human skin and confirms that most of them can enter the body via this route.

Lead author of the study, Dr Oddný Ragnarsdóttir carried out the research while studying for her PhD at the University of Birmingham. “The ability of these chemicals to be absorbed through skin has previously been dismissed because the molecules are ionised. The electrical charge that gives them the ability to repel water and stains was thought to also make them incapable of crossing the skin membrane,” she explained.

“Our research shows that this theory does not always hold true and that, in fact, uptake through the skin could be a significant source of exposure to these harmful chemicals,” she added.

The researchers investigated 17 different PFAS. The compounds selected were among those most widely used, and most widely studied for their toxic effects and other ways through which humans might be exposed to them. Most significantly, they correspond to chemicals regulated by the EU’s Drinking Water Directive.

In their experiments the team used 3D human skin equivalent models – multilayered laboratory grown tissues that mimic the properties of normal human skin, meaning the study could be carried out without using any animals. They applied samples of each chemical to measure what proportions were absorbed, unabsorbed, or retained within the models.

Of the 17 PFAS tested, the team found 15 substances showed substantial dermal absorption – at least 5 per cent of the exposure dose. At the exposure doses examined, absorption into the bloodstream of the most regulated PFAS (perfluoro octanoic acid (PFOA)) was 13.5 per cent with a further 38 per cent of the applied dose retained within the skin for potential longer-term uptake into the circulation, as per the study.

The amount absorbed seemed to correlate with the length of the carbon chain within the molecule. Substances with longer carbon chains showed lower levels of absorption, while compounds with shorter chains that were introduced to replace longer carbon chain PFAS like PFOA, were more easily absorbed. Absorption of perfluoro pentanoic acid for example was four times that of PFOA at 59 per cent.

“Our study provides the first insight into the significance of the dermal route as a pathway of exposure to a wide range of forever chemicals. Given the large number of existing PFAS, it is important that future studies aim to assess the risk of broad ranges of these toxic chemicals, rather than focusing on one chemical at a time,” study co-author, Dr Mohamed Abdallah, said.

Study co-author, professor Stuart Harrad, of the University of Birmingham’s School of Geography, Earth and Environmental Sciences, added, “This study helps us to understand how important exposure to these chemicals via the skin might be and also which chemical structures might be most easily absorbed. This is important because we see a shift in industry towards chemicals with shorter chain lengths because these are believed to be less toxic – however the trade-off might be that we absorb more of them, so we need to know more about the risks involved.”

Fibre2Fashion News Desk (RR)

Leave your Comments

Esteemed Clients

Woolmark Services India Pvt. Ltd.
Weitmann & Konrad GmbH & Co. KG
VNU Exhibitions Asia
USTER
UBM China (Shanghai)
Tuyap Tum Fuarcilik Yapim A.S.
TÜYAP IHTISAS FUARLARI A.S.
Tradewind International Servicing
Thermore (Far East) Ltd.
The LYCRA Company Singapore  Pte. Ltd
Thai Trade Center
Thai Acrylic Fibre Company Limited
X
Advanced Search